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Abstract

This paper deals with free vibration problems of uniform Timoshenko beams under various supporting boundary

conditions. The technique we have used is based on applying the Adomian modified decomposition method (AMDM) to

our vibration problems. Doing some simple mathematical operations on the method, we can obtain ith natural frequencies

and mode shapes one at a time. The computed results agree well with those analytical and numerical results given in the

literature. These results indicate that the present analysis is accurate, and provides a unified and systematic procedure

which is simpler and more straightforward than the other modal analysis.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The vibration of beams is important in many situations of engineering practice, such as mechanical, civil,
and aerospace engineering. The vibration problems of beams have been treated according to the classical
Euler–Bernoulli beam theory. However, if the effects of shear deformation and rotary inertia are considered,
the Timoshenko beam theory is required. The free vibration of a uniform Timoshenko beam under various
boundary conditions has been studied by many authors via many different methods [1–9]. Recently, Posiadala
[10] studied the free vibrations of uniform Timoshenko beams with attachments by using the Lagrange
multiplier formalism. Ho and Chen [11] presented the analysis of general elastically restrained non-uniform
beams using differential transform. Karami et al. [12] presented a differential quadrature element method for
vibration of shear deformable beams with general boundary conditions. Lee and Schultz [13] presented the
pseudospectral method for eigenvalue analysis of Timoshenko beams. Ferreira and Fasshauer [14] studied the
computation of natural frequencies of shear deformable beams by an RBF function–pseudospectral method.

In this study, a new computed approach called Adomian modified decomposition method (AMDM) is
introduced to solve the free vibration problems. The concept of AMDM was first proposed by Adomian and
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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was applied to solve linear and nonlinear initial/boundary-value problems in physics [15–17]. Using the
AMDM, Hsu et al. [18] and Lai et al. [19,20] have proposed the method to solve the free vibration problems of
Euler–Bernoulli beams. In this paper, one can extend the Hsu and Lai study and consider the free vibration
problems of uniform Timoshenko beams with a tip mass and elastically end constraints. Using the AMDM,
the two coupled governing differential equations become two recursive algebraic equations and the boundary
conditions at the right end become simple algebraic frequency equations which are suitable for symbolic
computation. Moreover, after some simple algebraic operations on these frequency equations any ith natural
frequency can be obtained. Finally, some problems of free vibration of uniform Timoshenko beams are solved
and showed excellent agreement with the published results to verify the accuracy and efficiency of the present
method.

2. The principle of AMDM

In order to solve vibration problems of Timoshenko beams by the Adomian modified decomposition
method the basic theory is stated in brief in this section. Consider the system of second-order differential
equations consisting of two equations in two unknown functions u1ðxÞ and u2ðxÞ.

FuðxÞ ¼ gðxÞ, (1)

where F represents a general nonlinear ordinary differential operator involving both linear and nonlinear
parts, that is FuðxÞ can be decomposed into

FuðxÞ ¼ LuðxÞ þ RuðxÞ þNuðxÞ, (2)

where LuðxÞ þ RuðxÞ are the linear terms in FuðxÞ, L is an invertible operator, which is taken as the highest-
order derivative, that is L ¼ d2=dx2, and R is the remainder of the linear operator, and NuðxÞ represents the
nonlinear terms in FuðxÞ. Thus RuðxÞ can be decomposed into

RuðxÞ ¼ PðxÞu00ðxÞ þ BðxÞu0ðxÞ þDðxÞuðxÞ, (3)

where the 2� 2 coefficient matrices P(x), B(x), and D(x) are the functions of x only, and the vector u(x) of two
unknown functions and the vector g(x) of given functions are defined as

uðxÞ ¼
u1ðxÞ

u2ðxÞ

" #
; u0ðxÞ ¼

u01ðxÞ

u02ðxÞ

" #
; u00ðxÞ ¼

u001ðxÞ

u002ðxÞ

" #
, (4)

and

gðxÞ ¼
g1ðxÞ

g2ðxÞ

" #
. (5)

Thus, Eq. (1) can be written as

LuðxÞ þ PðxÞu00ðxÞ þ BðxÞu0ðxÞ þDðxÞuðxÞ þNuðxÞ ¼ gðxÞ. (6)

Eq. (6) corresponds to an initial value problem or a boundary-value problem. Solving for LuðxÞ, one can
obtain

uðxÞ ¼ UðxÞ þ L�1gðxÞ � L�1½PðxÞu00ðxÞ� � L�1½BðxÞu0ðxÞ� � L�1½DðxÞuðxÞ� � L�1½NuðxÞ�, (7)

where UðxÞ ¼ uð0Þ þ u0ð0Þx is determined by the initial conditions of the system and the operator L�1 may be
regarded as a twice definite integration from 0 to x and defined as L�1 ¼

R x

0

R x

0 � � � dxdx. In order to solve the
system (7) by the AMDM, one can decompose u(x) into the infinite sum of convergent series

uðxÞ ¼
u1ðxÞ

u2ðxÞ

" #
¼

P1
k¼0

c1;kxk

P1
k¼0

c2;kxk

2
6664

3
7775 ¼

X1
k¼0

c1;k

c2;k

" #
xk ¼

X1
k¼0

ckxk, (8)
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where the coefficient vectors ck are expressed as

ck ¼
c1;k

c2;k

" #
(9)

and the given vector g(x) and the coefficient matrices P(x), B(x), and D(x) can be also decomposed as

gðxÞ ¼
X1
k¼0

gkxk; PðxÞ ¼
X1
k¼0

Pkxk; BðxÞ ¼
X1
k¼0

Bkxk; DðxÞ ¼
X1
k¼0

Dkxk, (10)

where the vector gk and the three matrices Pk, Bk, and Dk are constants. By using the theorem of Cauchy
product, one can decompose the three terms PðxÞu00ðxÞ, BðxÞu0ðxÞ, and DðxÞuðxÞ in Eq. (7) into the following
expressions:

PðxÞu00ðxÞ ¼
X1
k¼0

Pkxk
X1
k¼0

ðk þ 2Þðk þ 1Þckþ2xk ¼
X1
k¼0

xk
Xk

m¼0

ðmþ 2Þðmþ 1ÞPk�mcmþ2 ¼
X1
k¼0

pkxk, (11)

BðxÞu0ðxÞ ¼
X1
k¼0

Bkxk
X1
k¼0

ðk þ 1Þckþ1x
k ¼

X1
k¼0

xk
Xk

m¼0

ðmþ 1ÞBk�mcmþ1 ¼
X1
k¼0

bkxk, (12)

DðxÞuðxÞ ¼
X1
k¼0

Dkxk
X1
k¼0

ckxk ¼
X1
k¼0

xk
Xk

m¼0

Dk�mcm ¼
X1
k¼0

dkxk, (13)

where the three vectors pk, bk and dk are defined as

pk ¼
n1;k

n̄2;k

" #
¼
Xk

m¼0

ðmþ 2Þðmþ 1ÞPk�mcmþ2;

bk ¼
b1;k

b2;k

" #
¼
Xk

m¼0

ðmþ 1ÞBk�mcmþ1; dk ¼
d1;k

d2;k

" #
¼
Xk

m¼0

Dk�mcm, (14)

and the nonlinear term NuðxÞ is decomposed as

NuðxÞ ¼
X1
k¼0

xkAkðc0; c1; . . . ; ckÞ, (15)

where the vector Akðc0; c1; . . . ; ckÞ can be defined as

Akðc0; c1; . . . ; ckÞ ¼
A1;k

A2;k

" #
¼

A1;kðc1;0; c1;1; . . . ; c1;k; c2;0; c2;1; . . . ; c2;kÞ

A2;kðc1;0; c1;1; . . . ; c1;k; c2;0; c2;1; . . . ; c2;kÞ

" #
. (16)

The coefficients A1;k and A2;k are known as Adomian polynomials [15–17]. Substitute Eqs. (11)–(15) into the
Eq. (7), one can have

uðxÞ ¼
X1
k¼0

ckxk ¼ UðxÞ þ L�1
X1
k¼0

gkxk

 !
� L�1

X1
k¼0

pkxk

 !
� L�1

X1
k¼0

bkxk

 !

� L�1
X1
k¼0

dkxk

 !
� L�1

X1
k¼0

xkAkðc0; c1; . . . ; ckÞ

 !

¼ uð0Þ þ u0ð0Þxþ
X1
k¼0

gk � pk � bk � dk � Akðc0; c1; . . . ; ckÞ

ðk þ 1Þðk þ 2Þ
xkþ2. (17)

By collecting the coefficients of like powers of x, the following recurrence relations for ck can be obtained:

c0 ¼ uð0Þ; c1 ¼ u0ð0Þ, (18)
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ck ¼
gk�2 � pk�2 � bk�2 � dk�2 � Ak�2ðc0; c1; . . . ; ck�2Þ

kðk � 1Þ
; k ¼ 2; 3; 4; . . . , (19)

where gk�2, pk�2, bk�2, dk�2, and Ak�2ðc0; c1; . . . ; ck�2Þ can be determined by the Eqs. (10), (14), and (16). The
coefficient vectors ck ðkX2Þ of each term in the series (8) can be decided by the recurrence relation (19), and
the power series solutions (8) of the system (6) of differential equations in the initial/boundary value problems
yield simple recurrence relations for the coefficient vectors ck. Following Refs. [21–24], the power series
solutions (8) converge to u(x). However, in practice all the coefficient vectors ck in the series (8) cannot be
determined exactly, and the solutions can only be approximated by a truncated series

Pn�1
k¼0 ckxk, where n is the

approximate term of the power series solutions.

3. Using the AMDM to analyze the free vibration of uniform Timoshenko beams

Consider a uniform elastic Timoshenko beam of finite length l as shown in Fig. 1, the beam is made of
homogeneous and isotropic materials and is constrained with the rotational and translational flexible ends,
and with a concentrated mass at the right end, with account taken of the rotatory inertia of the mass, and its
eccentricity. The two coupled equations of motion for transverse vibrations of the uniform Timoshenko beam
are given by [25–27]

rA
q2y

qt2
�

q
qx

kGA
qy

qx
� c

� �� �
¼ 0, (20)

rI
q2c
qt2
� kGA

qy

qx
� c

� �
�

q
qx

EI
qc
qx

� �
¼ 0, (21)

where y ¼ yðx; tÞ and c ¼ cðx; tÞ are the total transverse deflection of the beam and the angle of rotation of the
cross-section due to bending of the beam at position x and time t, respectively. E is the Young’s modulus of
the beam material, G the shear modulus of the beam material, k the shear correction factor of the beam, A the
cross-sectional area of the beam, I the area moment of inertia of the beam, r the mass density of the beam
material (mass per unit volume). The boundary conditions are given by

kGA
qyðx; tÞ

qx
� cðx; tÞ

� �
� kTLyðx; tÞ ¼ 0, (22)

EI
qcðx; tÞ

qx
� kRLcðx; tÞ ¼ 0, (23)

at x ¼ 0, and

kGA
qyðx; tÞ

qx
� cðx; tÞ

� �
þ kTRyðx; tÞ þM

q2yðx; tÞ
qt2

þMe
q2cðx; tÞ

qt2
¼ 0, (24)
E, I, �, A, G, �, �

l

x
y (x,t)

kTL
kTR

kRL

kRR

e

M, JM

Fig. 1. An uniform Timoshenko beam with elastically restrained ends ðkTL; kRL; kTR; kRRÞ and with a tip mass ðM; JM ; eÞ at the right end.
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EI
qcðx; tÞ

qx
þ kRRcðx; tÞ þ ðJM þMe2Þ

q2cðx; tÞ
qt2

þMe
q2yðx; tÞ

qt2
¼ 0, (25)

at x ¼ l, where kTL, kRL and kTR, kRR are the translational spring constants and the rotational spring
constants at the left end and right end of the beam, respectively, and M, JM, and e are the concentrated mass
attached at beam tip, the moment of inertia of the tip mass, the eccentricity which is the distance between the
beam tip and the center of the tip mass at the right end of the beam, respectively.

For time harmonic vibration with angular frequency o, the two coupled governing equations of motion (20)
and (21) are given by

d

dx
kGA

dY ðxÞ

dx
�CðxÞ

� �� �
þ rAo2Y ðxÞ ¼ 0, (26)

d

dx
EI

dCðxÞ
dx

� �
þ kGA

dY ðxÞ

dx
�CðxÞ

� �
þ rIo2CðxÞ ¼ 0, (27)

where Y ðxÞ is the modal transverse deflection and CðxÞ is the modal angle of rotation due to bending. The
boundary conditions (22)–(25) can be written by

kGA
dY ðxÞ

dx
� kTLY ðxÞ � kGACðxÞ

� �����
x¼0

¼ 0, (28)

EI
dCðxÞ
dx
� kRLCðxÞ

� �����
x¼0

¼ 0, (29)

and

kGA
dY ðxÞ

dx
þ ðkTR �Mo2ÞY ðxÞ � ðkGAþMeo2ÞCðxÞ

� �����
x¼l

¼ 0, (30)

EI
dCðxÞ
dx
�Meo2Y ðxÞ þ ½kRR � ðJM þMe2Þo2�CðxÞ

� �����
x¼l

¼ 0. (31)

Without loss of generality, introduce the following dimensionless quantities:

X ¼
x

l
; Y ðX Þ ¼

Y ðxÞ

l
; CðX Þ ¼ CðxÞ

O2 ¼
rAo2l4

EI
; Z ¼

I

Al2
; x ¼

kGAl2

EI
¼

k
2Zð1þ nÞ

KTL ¼
kTLl3

EI
; KTR ¼

kTRl3

EI
; KRL ¼

kRLl

EI
; KRR ¼

kRRl

EI

m ¼
M

MB

¼
M

rAl
; d ¼

e

l
; g ¼

ffiffiffiffiffiffiffiffiffi
JM

Ml2

r
(32)

then the Eqs. (26) and (27) can be rewritten in the dimensionless form as follows:

d

dX
x

dY ðX Þ

dX
�CðX Þ

� �� �
þ O2Y ðX Þ ¼ 0, (33)

x
dY ðX Þ

dX
�CðX Þ

� �
þ

d

dX

dCðX Þ
dX

� �
þ ZO2CðX Þ ¼ 0, (34)
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and the boundary conditions (28)–(31) can be also rewritten in the dimensionless form as follows:

x
dY ðxÞ

dx
� KTLY ðX Þ � xCðX Þ

� �����
X¼0

¼ 0, (35)

dCðX Þ
dX

� KRLCðX Þ
� �����

X¼0

¼ 0, (36)

and

x
dY ðX Þ

dX
þ ðKTR � mO2ÞY ðX Þ � ½xþ dmO2�CðX Þ

� �����
X¼1

¼ 0, (37)

dCðX Þ
dX

� dmO2Y ðX Þ þ ½KRR � mðg2 þ d2ÞO2�CðX Þ
� 	����

X¼1

¼ 0. (38)

Eqs. (33) and (34) can be written in the matrix form as

x 0

0 1

� �
Y 00ðX Þ

C00ðX Þ

" #
þ

0 �x

x 0

" #
Y 0ðX Þ

C0ðX Þ

" #
þ

O2 0

0 �xþ ZO2

" #
Y ðX Þ

CðX Þ

" #
¼

0

0

� �
. (39)

Here primes denote differentiation with respect to X, and furthermore, Eq. (39) can be reduced in the
following expression which is similar to Eq. (6):

u00ðX Þ þ Bu0ðX Þ þDuðX Þ ¼ gðX Þ ¼ 0, (40)

where

uðX Þ ¼
Y ðX Þ

CðX Þ

" #
; u0ðX Þ ¼

Y 0ðX Þ

C0ðX Þ

" #
; u00ðX Þ ¼

Y 00ðX Þ

C00ðX Þ

" #
, (41)

and

B ¼
0 �1

x 0

" #
; D ¼

O2

x
0

0 �xþ ZO2

2
664

3
775.(42)

From the previous mentions in Eqs. (8), (18), and (19), one can get the dimensionless modal transverse
deflection Y(X) and dimensionless modal angle of rotation C(X) by the AMDM. The power series solutions of
Eq. (39) can be found as follows:

uðX Þ ¼
Y ðX Þ

CðX Þ

" #
¼

P1
k¼0

c1;kX k

P1
k¼0

c2;kX k

2
6664

3
7775 ¼

X1
k¼0

ckX k ¼ UðX Þ þ
X1
k¼2

ckX k, (43)

where

UðX Þ ¼ c0 þ c1X ¼ uð0Þ þ u0ð0ÞX , (44)

c0 ¼ uð0Þ ¼
Y ð0Þ

Cð0Þ

" #
; c1 ¼ u0ð0Þ ¼

Y 0ð0Þ

C0ð0Þ

" #
, (45)
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and the recurrence relations for ck can be obtained

ck ¼
�1

kðk � 1Þ
½ðk � 1ÞBck�1 þDck�2�; k ¼ 2; 3; 4; . . . . (46)

Therefore, we can find the coefficient vectors ck from the recurrent equation (46) and finally we can get the
solution vector uðX Þ ¼ ½Y ðX Þ CðX Þ�T from Eq. (43). The series solution, of course, is

P1
k¼0 ckX k. However, in

practice all the coefficient vectors ck in series solution cannot be determined exactly, and the solutions can only
be approximated by a truncated series

Pn�1
k¼0 ckX k with n-term approximation, and one can now form

successive approximants

u½n�ðX Þ ¼
Y ½n�ðX Þ

C½n�ðX Þ

" #
¼
Xn�1
k¼0

ckX k, (47)

as n increases and the boundary conditions are also met. Thus

u½1�ðX Þ ¼ c0; u½2�ðX Þ ¼ u½1�ðX Þ þ c1X ; u½3�ðX Þ ¼ u½2�ðX Þ þ c2X
2; . . . , (48)

serve as approximate solutions with increasing accuracy as n!1, and is also obligated to, of course, satisfy
the boundary conditions, that is

uðX Þ ¼ lim
n!1

u½n�ðX Þ. (49)

The boundary conditions (35)–(38) can be also written in matrix form as

x 0

0 1

� �
c1 þ

�KTL �x

0 �KRL

" #
c0 ¼

0

0

� �
(50)

and

x 0

0 1

� �
Y 0ð1Þ

C0ð1Þ

" #
þ

KTR � mO2 �x� dmO2

�dmO2 KRR � mðg2 þ d2ÞO2

" #
Y ð1Þ

Cð1Þ

" #
¼

0

0

� �
. (51)
Table 1

The relations between c0 ¼ P0ðOÞa and c1 ¼ P1ðOÞa for the four special cases: clamped, pinned, guided, and free (a ¼ ½a1 a2�
T, a1 and a2

are arbitrary constants).

X ¼ 0 Boundary conditions Relations P0ðOÞ; P1ðOÞ

Clamped KTL !1; KRL !1 Y ¼ 0 c0 ¼ 0; c1 ¼ a P0ðOÞ ¼ 0

C ¼ 0 P1ðOÞ ¼ I

Pinned KTL !1; KRL ¼ 0 Y ¼ 0
c0 ¼

0

a1

" #
; c1 ¼

a2

0

� �
P0ðOÞ ¼

0 0

1 0

� �

C0 ¼ 0
P1ðOÞ ¼

0 1

0 0

� �

Guided KTL ¼ 0; KRL !1 Y 0 ¼ C
c0 ¼

a1

0

� �
; c1 ¼

0

a2

" #
P0ðOÞ ¼

1 0

0 0

� �

C ¼ 0
P1ðOÞ ¼

0 0

0 1

� �

Free KTL ¼ 0; KRL ¼ 0 Y 0 ¼ C
c0 ¼ a; c1 ¼

a2

0

� �
P0ðOÞ ¼ I

C0 ¼ 0
P1ðOÞ ¼

0 1

0 0

� �
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The two coefficient vectors c0 and c1 in Eq. (45) can be decided by the BCs of Eq. (50) and the relations
between c0 and c1 are listed in Table 1 for the four special cases: clamped, pinned, guided, and free. In the
general cases, assuming the coefficient vector c0 ¼ P0ðOÞa and P0ðOÞ ¼ I, where I is a 2� 2 identity matrix and
a ¼ ½a1 a2�

T, a1 and a2 are arbitrary constants. Then another coefficient vector c1 can be expressed as the
function of a, that is, from Eq. (50), by setting

c1 ¼

KTL

x
1

0 KRL

2
4

3
5; c0 ¼

KTL

x
1

0 KRL

2
4

3
5; P0ðOÞa ¼ P1ðOÞa, (52)

then the initial term UðX Þ in Eq. (44) is the function of a and from recurrence relations (46), the following
relationships are given:

ck ¼
�1

kðk � 1Þ
½ðk � 1ÞBck�1 þDck�2� ¼ PkðOÞa; k ¼ 2; 3; 4; . . . , (53)

where

P0ðOÞ ¼ I; P1ðOÞ ¼

KTL

x
1

0 KRL

2
64

3
75

..

.

PkðOÞ ¼
�1

kðk � 1Þ
½ðk � 1ÞBPk�1ðOÞ þDPk�2ðOÞ�; k ¼ 2; 3; 4; . . . . (54)

The 2� 2 matrices PkðOÞ ðk ¼ 0; 1; 2; . . . ; n� 1Þ are the functions of O. Hence one can find that the coefficient
vectors ck ðk ¼ 1; 2; 3; . . . ; n� 1Þ are the functions of a and O. In the meantime, the n-term approximation
u½n�ðX Þ of the solution vector u(X) is also the function of a and O, that is

u½n�ðX Þ ¼
Xn�1
k¼0

ckX k ¼
Xn�1
k¼0

PkðOÞaX k. (55)

By substituting u½n�ðX Þ into Eq. (51), one can obtain

F½n�ðOÞa ¼ 0, (56)

where

F½n�ðOÞ ¼
Xn�2
k¼0

ðk þ 1Þ
x 0

0 1

� �
Pkþ1ðOÞ þ

Xn�1
k¼0

KTR � mO2 �x� dmO2

�dmO2 KRR � mðg2 þ d2ÞO2

" #
PkðOÞ, (57)

where F½n�ðOÞ is the 2� 2 matrix which is decided by the approximate term n and dimensionless natural
frequency O. For nontrivial solution vectors a in Eq. (56) one can obtain the frequency equation by the
Cramer’s rule

jF½n�ðOÞj ¼ 0, (58)

where jF½n�ðOÞj is the determinant of F½n�ðOÞ. Hence the ith estimated dimensionless natural frequency O½n�i

corresponding to n can be obtained by Eq. (58) and the approximate term n is decided by the following
equation:

jO½n�i � O½n�1�i jp�, (59)
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where O½n�1�i is the ith estimated dimensionless natural frequency corresponding to the approximate term n�1,
and e is a preset small value. If Eq. (59) is satisfied, then O½n�i is the ith dimensionless natural frequency.
Substituting O½n�i into Eq. (47) we have

u½n�i ðX Þ ¼
Y
½n�
i ðX Þ

C½n�i ðX Þ

" #
¼
Xn�1
k¼0

c
½i�
k X k, (60)

where c
½i�
k is ck whose O is substituted by O½n�i , and u½n�i ðX Þ is the ith mode shape function corresponding to the ith

dimensionless natural frequency O½n�i . By normalizing Eq. (60), the ith normalized mode shape function is defined as

u½n�i ðX Þ ¼
u½n�i ðX ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1

0 ½u
½n�
i ðX Þ�

2 dX

q ¼

Y
½n�
i ðX Þ


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1
0 ½Y

½n�
i ðX Þ�

2 dX

q

C½n�i ðX Þ


 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR 1
0 ½C

½n�
i ðX Þ�

2 dX

q
2
6664

3
7775 ¼

Y
½n�

i ðX Þ

C
½n�

i ðX Þ

2
4

3
5, (61)

where u½n�i ðX Þ is the ith normalized mode shape function of the beam corresponding to the ith dimensionless natural
frequency O½n�i .

Hence, by using the method of AMDM, we can easily solve the vibration problem of uniform Timoshenko beams
with various boundary conditions. The proposed method is very efficient with the aid of symbolic computation.

4. Verifications and examples

In order to demonstrate the feasibility and the efficiency of AMDM in this paper, the four cases are
discussed as follows. By using AMDM, one can obtain the natural frequencies and mode shapes of the beam
with various boundary conditions at both ends. The computed results are compared with the analytical and
numerical results in the literatures.

4.1. A clamped– free beam

In this case, the system properties are given as Z ¼ 0:0004 and x ¼ 625. The BCs are Y ð0Þ ¼ 0; Cð0Þ ¼ 0 and
Y 0ð1Þ �Cð1Þ ¼ 0; C0ð1Þ ¼ 0, that is KTL !1; KRL !1 and KTR ¼ 0; KRR ¼ 0. From Table 1 one can set
c0 ¼ 0, c1 ¼ a and P1ðOÞ ¼ I, by substituting them into Eq. (54), then the matrices PkðOÞ can be obtained

P2ðOÞ ¼
0 0:5

�312:5 0

" #

P3ðOÞ ¼
�104:1667� 2:6667� 10�4O2 0

0 �6:6667� 10�5O2

" #

P4ðOÞ ¼
0 �8:3333� 10�5

�2:4253� 10�12 þ 5:2083� 10�2O2 0

" #

P5ðOÞ ¼
�4:8506� 10�13 þ 1:875� 10�2O2 þ 2:1333� 10�8O4

0

"

0

8:3333� 10�3O2 þ 1:3333� 10�9 O4

#

..

. ..
.

PkðOÞ ¼
�1

kðk � 1Þ
½ðk � 1ÞBPk�1ðOÞ þDPk�2ðOÞ�, (62)
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Table 2

Convergence results of the ith estimated dimensionless natural frequency O½n�i for n ¼ 60 approximate terms (� ¼ 0:00001).

n O½n�1 O½n�2 O½n�3 O½n�4 O½n�5 O½n�6

5 2.13468 57.60496

6 0.43470 38.92292

13 3.49974 140.86534

14 3.49944 116.22340

17 3.49980 21.48919 36.32149 170.97845

18 3.49980 21.50294 37.19355 146.19060

23 3.49980 21.35455

24 3.49980 21.35465 58.12890 75.58746

34 3.49980 21.35465 57.47045 106.99807 147.25981 265.02921

35 3.49980 21.35465 57.47046 106.88348

41 3.49980 21.35465 57.47046 106.92639 166.22669 385.80415

42 3.49980 21.35465 57.47046 106.92637 166.60817 293.72594

50 3.49980 21.35465 57.47046 106.92637 166.65999 233.87972

51 3.49980 21.35465 57.47046 106.92637 166.66000 233.78540

58 3.49980 21.35465 57.47046 106.92637 166.66000 233.84932

59 3.49980 21.35465 57.47046 106.92637 166.66000 233.84932

60 3.49980 21.35465 57.47046 106.92637 166.66000 233.84932
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from above, the n-term approximation u½n�ðX Þ in Eq. (55) can be given and substitute it into the BCs at X ¼ 1,
one can obtain

F½n�ðOÞa ¼
Xn�1
k¼1

k �1

0 k

� �
PkðOÞ

( )
a ¼ 0 (63)

and the frequency equation (58) becomes

Xn�1
k¼1

k �1

0 k

� �
PkðOÞ

�����
����� ¼ 0. (64)

Hence the ith estimated dimensionless natural frequency O½n�i can be calculated from Eq. (64) by the
computational technique and is listed in Table 2 for n ¼ 60. From this table, we can obtain any eigenvalue one
at a time. The larger the approximate term is, more eigenvalues one can find. From Eq. (59) and Table 2, we
have

jO½16�i � O½15�i jp� ¼ 0:00001. (65)

Thus, the first dimensionless natural frequency O1 corresponding to n ¼ 16 can be obtained as

O1 ¼ O½16�1 ¼ 3:49980. (66)

By substituting O½16�1 into Eq. (55) and normalizing it by Eq. (61), the first mode shape functions is given as

Ȳ
½16�
1 ðX Þ ¼ 1:53646� 10�2X þ 3:48967X 2 � 1:60053X 3

� 7:12394� 10�3X 4 þ 3:52871� 10�3X 5 þ 1:18737� 10�1X 6

� 2:33403� 10�2X 7 � 1:03881� 10�4X 8 þ 2:22341� 10�5X 9

þ 2:88591� 10�4X 10 � 3:61015� 10�5X 11 � 1:60662� 10�7X 12

þ 2:15395� 10�8X 13 þ 1:47159� 10�7X 14 � 1:35004� 10�8X 15, (67)
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C
½16�

1 ðX Þ ¼ 3:26124X � 2:24357X 2 � 2:66305� 10�3X 3

þ 4:58010� 10�3X 4 þ 3:32881� 10�1X 5 � 7:63382� 10�2X 6

� 2:32990� 10�4X 7 þ 6:67868� 10�5X 8 þ 1:34840� 10�3X 9

� 1:85540� 10�4X 10 � 6:60618� 10�7X 11 þ 1:03292� 10�7X 12

þ 9:62567� 10�7X 13 � 9:46108� 10�8X 14 � 3:59283� 10�10X 15. (68)

By using the given analytical method [1], the first dimensionless natural frequency and mode shape functions
can be obtained as

O1 ¼ O½a�1 ¼ 3:4998, (69)

Y
½a�

1 ðX Þ ¼ 0:9971½coshð1:8675X Þ � cosð1:8740X Þ�

� 0:73052 sinhð1:8675X Þ þ 0:7362 sinð1:8740X Þ, (70)
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Fig. 2. The first six mode shape functions Y 1ðX Þ �Y 6ðX Þ (—, analytical mode shape function).
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Fig. 3. The first six mode shape functions C1ðX Þ �C6ðX Þ (—, analytical mode shape function).
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C
½a�

1 ðX Þ ¼ � 0:6411½coshð1:8675X Þ � cosð1:8740X Þ�

þ 0:8750 sinhð1:8675X Þ þ 0:8683 sinð1:8740X Þ, (71)

where O½a�1 , Y
½a�

1 ðX Þ, and C
½a�

1 ðX Þ are analytical solutions of the first dimensionless natural frequency and mode
shape functions, respectively. One can deduce that O1 ¼ O½16�1 ¼ O½a�1 ¼ 3:49980 from Eqs. (66) and (69).
Following the same procedure as shown above, the other dimensionless natural frequencies and mode shapes
can be obtained. In Table 2, as the approximate term number n increases, the dimensionless natural
frequencies O1 � O6 converge to 3.49980, 21.35465, 57.47046, 106.92637, 166.660, 233.84932, very quickly one
by one without missing any frequency. Those complete natural frequencies lead to corresponding mode shapes
correctly, which are shown in Figs. 2 and 3.
4.2. A pinned– pinned beam

In this case, the system properties are given as Z ¼ 0:01, n ¼ 0:25, and k ¼ 2=3 (the same parameters as
Ref. [12]). The BCs are Y ð0Þ ¼ 0; C0ð0Þ ¼ 0, and Y ð1Þ ¼ 0, C0ð1Þ ¼ 0, that is KTL !1; KRL ¼ 0,
KTR !1; KRR ¼ 0. From Table 1 one can set c0 ¼ P0ðOÞa, c1 ¼ P1ðOÞa, and substitute them into
Table 3

The first three dimensionless natural frequencies O1 � O3 of a pinned–pinned beam for n ¼ 36 approximate terms (Z ¼ 0:01, n ¼ 0:25,
k ¼ 2/3); (I) Karami’s results [12], (II) analytical solutions [1].

Present (I) (II)

n ¼ 17 n ¼ 27 n ¼ 36

O1 8.21469 8.21469 8.21469 8.21 8.2147

O2 24.95166 24.22810 24.22810 24.23 24.2281

O3 28.72891 41.63873 41.54164 41.54 41.5416

Table 4

The first six dimensionless natural frequencies
ffiffiffiffiffiffi
O1

p
�

ffiffiffiffiffiffi
O6

p
of a pinned–pinned beam for n ¼ 65 approximate terms (� ¼ 0:00001, n ¼ 0:3,

k ¼ 5=6); (I) Lee’s results [13].

h/l Method
ffiffiffiffiffiffi
O1

p ffiffiffiffiffiffi
O2

p ffiffiffiffiffiffi
O3

p ffiffiffiffiffiffi
O4

p ffiffiffiffiffiffi
O5

p ffiffiffiffiffiffi
O6

p

0a Present 3.14159 6.28319 9.42478 12.56637 15.70796 18.84956

(I) 3.14159 6.28319 9.42478 12.5664 15.7080 18.8496

0.002 Present 3.14158 6.28310 9.42449 12.56569 15.70661 18.84842

(I) 3.14158 6.28310 9.42449 12.5657 15.7066 18.8473

0.005 Present 3.14153 6.28265 9.42298 12.56212 15.69965 18.83532

(I) 3.14153 6.28265 9.42298 12.5621 15.6997 18.8352

0.01 Present 3.14133 6.28106 9.41761 12.54941 15.67492 18.79264

(I) 3.14133 6.28106 9.41761 12.5494 15.6749 18.7926

0.02 Present 3.14053 6.27471 9.39631 12.49941 15.57841 18.62823

(I) 3.14053 6.27471 9.39632 12.4994 15.5784 18.6282

0.05 Present 3.13498 6.23136 9.25537 12.18132 14.99264 17.68103

(I) 3.13498 6.23136 9.25537 12.1813 14.9926 17.6810

0.1 Present 3.11568 6.09066 8.84052 11.34310 13.61317 15.67904

(I) 3.11568 6.09066 8.84052 11.3431 13.6132 15.6790

0.2 Present 3.04533 5.67155 7.83952 9.65709 11.22204 12.60221

(I) 3.04533 5.67155 7.83952 9.65709 11.2220 12.6022

aEuler–Bernoulli beam.
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Fig. 4. The first six dimensionless frequency ratio Oi=OiðEBÞ versus height-to-length h=l (OiðEBÞ ¼ the ith dimensionless natural frequency

of Euler–Bernoulli beam)

Table 5

The first three dimensionless natural frequencies O1 �O3 of a Timoshenko beam with two elastically restrained ends for n approximate

terms (n ¼ 0:3, k ¼ 0:85, Z ¼ 0:01, KTL ¼ KTR ¼ KRL ¼ KRR, � ¼ 0:00001); (I) Maurizi’s results [5].

KTL n O1 O2 O3

Present (I) Present (I) Present (I)

1 13 1.40219 1.40 4.64014 4.64 – 18.92

17 1.40219 1.40 4.64050 4.64 19.03083 18.92

26 1.40219 1.40 4.64051 4.64 18.93370 18.92

100 20 10.17325 10.17 18.45166 18.41 30.57089 31.35

25 10.17325 10.17 18.45097 18.41 31.40052 31.35

31 10.17325 10.17 18.45097 18.41 31.40181 31.35
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Eq. (54), the matrices PkðOÞ can be given as

P2ðOÞ ¼
0 0

13:3333� 0:005O2 �13:3333

" #

P3ðOÞ ¼
4:4444� 1:6667� 10�3O2 �4:4444� 6:25� 10�3 O2

0 0

" #

P4ðOÞ ¼
0 0

�1:1111� 10�2 O2 þ 4:1667� 10�6O4 5:2778� 10�2 O2

" #
.

..

. ..
.

(72)
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Table 6

The first three dimensionless natural frequencies O1 �O3 of the Timoshenko beam with two elastically restrained ends (n ¼ 0:3, k ¼ 0:85, Z ¼ 0:01, KTL ¼ KTR, KRL ¼ KRR,

� ¼ 0:00001).

KTL KRL

0 10�1 1 10 102 N

O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3

0 0a 0a 16.81947a 0 1.44289 17.06640 0 4.06816 18.79373 0 7.31416 23.33168 0 8.27422 25.19319 0b 8.40466b 25.46170b

10�4 0.01414 0.02315 16.81949 0.01414 1.44308 17.06642 0.01414 4.06822 18.79374 0.01414 7.31419 23.33169 0.01414 8.27424 25.19320 0.01414 8.40469 25.46171

10�3 0.04472 0.07319 16.81964 0.04472 1.44473 17.06656 0.04472 4.06878 18.79387 0.04472 7.31445 23.33177 0.04472 8.27445 25.19327 0.04472 8.40489 25.46177

10�2 0.14141 0.23145 16.82112 0.14141 1.46119 17.06802 0.14141 4.07431 18.79513 0.14141 7.31701 23.33260 0.14142 8.27653 25.19393 0.14142 8.40691 25.46242

10�1 0.44673 0.73176 16.83596 0.44674 1.61651 17.08256 0.44683 4.12921 18.80773 0.44699 7.34262 23.34086 0.44703 8.29729 25.20060 0.44704 8.42707 25.46886

1 1.39898 2.30933 16.98428 1.39944 2.71515 17.22791 1.40219 4.64050 18.93370 1.40704 7.59299 23.42339 1.40847 8.50132 25.26717 1.40866 8.62540 25.53320

10 4.03294 7.15474 18.45007 4.04497 7.27061 18.66448 4.11880 8.02617 20.17923 4.25498 9.67414 24.23977 4.29676 10.26283 25.92636 4.30239 10.34557 26.17046

102 7.40296 18.44190 28.80152 7.49099 18.44218 28.87138 8.09115 18.44411 29.37318 9.57492 18.44897 30.78330 10.17325 18.45097 31.40181 10.26065 18.45126 31.49355

103 8.29253 24.68492 42.41438 8.41893 24.73669 42.42545 9.31960 25.11677 42.50446 11.93916 26.29496 42.72766 13.22383 26.88717 42.82986 13.42618 26.98021 42.84542

104 8.39333 25.38535 44.21791 8.52450 25.45214 44.25174 9.46373 25.94851 44.49885 12.24686 27.55564 45.24486 13.64335 28.40091 45.60490 13.86531 28.53576 45.66043

N 8.40466c 25.46170c 44.40051c 8.53638 25.53024 44.43747 9.47999 26.04028 44.70817 12.28190 27.69958 45.53239 13.69133 28.57663 45.93282 13.91558d 28.71679d 45.99466d

aFree–free.
bGuided–guided.
cPinned–pinned.
dClamped–clamped.
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Table 7

The first three dimensionless natural frequencies O4 �O6 of the Timoshenko beam with two elastically restrained ends (n ¼ 0:3, k ¼ 0:85, Z ¼ 0:01, KTL ¼ KTR, KRL ¼ KRR,

� ¼ 0:00001).

KTL KRL

0 10�1 1 10 102 N

O4 O5 O6 O4 O5 O6 O4 O5 O6 O4 O5 O6 O4 O5 O6 O4 O5 O6

0 33.96173a 51.81109a 59.52834a 34.20753 52.04943 59.65340 36.04842 53.92774 60.67519 41.69303 60.50755 64.83753 44.07162 63.20991 66.86969 44.40051b 63.55317b 67.14323b

10�4 33.96173 51.81110 59.52834 34.20753 52.04943 59.65340 36.04843 53.92774 60.67519 41.69304 60.50755 64.83753 44.07163 63.20991 66.86969 44.40051 63.55318 67.14323

10�3 33.96178 51.81111 59.52834 34.20758 52.04945 59.65340 36.04847 53.92776 60.67519 41.69308 60.50758 64.83753 44.07167 63.20993 66.86969 44.40055 63.55320 67.14323

10�2 33.96221 51.81127 59.52836 34.20802 52.04961 59.65342 36.04892 53.92795 60.67520 41.69350 60.50785 64.83754 44.07204 63.21020 66.86971 44.40092 63.55347 67.14324

10�1 33.96656 51.81286 59.52853 34.21239 52.05124 59.65358 36.05342 53.92988 60.67532 41.69773 60.51051 64.83762 44.07583 63.21286 66.86985 44.40464 63.55610 67.14340

1 34.01013 51.82882 59.53021 34.25621 52.06758 59.65519 36.09851 53.94918 60.67651 41.74005 60.53713 64.83845 44.11372 63.23941 66.87124 44.44175 63.58244 67.14492

10 34.45430 51.98991 59.54706 34.70249 52.23253 59.67139 36.55481 54.14348 60.68844 42.16253 60.80323 64.84669 44.49063 63.50402 66.88506 44.81088 63.84480 67.16003

102 39.24881 53.72316 59.72068 39.48708 54.00051 59.83817 41.23295 56.16961 60.81018 46.12020 63.38747 64.92597 47.94701 66.00907 67.01476 48.18929 66.32131 67.30167

103 54.41685 61.36374 63.41088 54.58464 61.42061 63.71984 55.78095 61.95791 66.16527 58.25808 65.44234 74.31955 58.76948 67.72539 76.25848 58.82551 68.06443 76.42448

104 56.98091 63.25716 66.78950 57.15304 63.28155 67.07177 58.43904 63.52487 69.35190 61.43154 66.04779 78.12577 61.92519 68.35228 80.34029 61.97161 68.71565 80.49050

N 57.17719c 63.55317c 67.14323c 57.34894 63.57531 67.42123 58.63963 63.79545 69.67207 61.75076 66.17245 78.51099 62.27041 68.46673 80.82702 62.31837d 68.83263d 80.98017d

aFree–free.
bGuided–guided.
cPinned–pinned.
dClamped–clamped.

J
.-C

.
H

su
et

a
l.

/
J

o
u

rn
a

l
o

f
S

o
u

n
d

a
n

d
V

ib
ra

tio
n

3
2

5
(

2
0

0
9

)
4

5
1

–
4

7
0

4
6
5



ARTICLE IN PRESS

Table 8

The first five dimensionless natural frequencies O1 � O5 of the cantilever Timoshenko beam with a tip mass at the free end (Z ¼ 0:0004,

x ¼ 625, m ¼ 1:0, g2 ¼ 0:125, d ¼ 0, KTL ¼ KRL !1, KTR ¼ KRR ¼ 0, � ¼ 0:00001); (I) Posiadala’s results [10], (II) Bruch’s results [3].

Method O1 O2 O3 O4 O5

Present 1.39820 5.72942 23.63976 58.40659 106.53806

(I) 1.40 5.73 23.64 58.41 106.54

(II) 1.40 5.73 23.64 58.41 106.54

Table 9

The square root of the dimensionless fundamental natural frequency
ffiffiffiffiffiffi
O1

p
of the cantilever Timoshenko beam elastically restrained and

carrying a tip mass at the free end (n ¼ 0:25, k ¼ 4=3, Z ¼ ðh=lÞ2=12, d ¼ 0, g ¼ 0, KTL ¼ KRL !1, KRR ¼ 0, � ¼ 0:00001); (I) Karami’s

results [12], (II) Matsuda’s results [8].

m h/l KTR ¼ 1 KTR ¼ 10

Present (I) (II) Present (I) (II)

1 0.01 1.34084 1.3408 1.3408 1.79884 1.7988 1.7988

0.1 1.33930 1.3392 1.3389 1.79779 1.7978 1.7976

0.2 1.33471 1.3350 1.3330 1.79471 1.7946 1.7940

20 0.01 0.66678 0.6668 0.6668 0.89527 0.8953 0.8953

0.1 0.66619 0.6662 0.6660 0.89501 0.8950 0.8949

0.2 0.66443 0.6643 0.6636 0.89426 0.8942 0.8939
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Following the same procedure as shown in case 4.1, the n-term approximation u½n�ðX Þ in Eq. (55) can be given
and substitute it into the BCs at X ¼ 1, one can obtain the frequency equation

jF½n�ðOÞj ¼ P0ðOÞ þ
Xn�1
k¼1

1 0

0 k

� �
PkðOÞ

�����
����� ¼ 0. (73)

Hence the ith dimensionless natural frequency O½n�i can be given by Eqs. (73) and (59), the first three
dimensionless natural frequencies are listed in Table 3 for the approximate terms n ¼ 36. From this table, the
calculated results compared with the Ref. [12] are in close agreement.

Another example in this case is also shown as follows. The square roots of the first six dimensionless natural
frequencies

ffiffiffiffiffiffi
O1

p
�

ffiffiffiffiffiffi
O6

p
in the pinned-pinned beam are listed in Table 4. The results presented here are for

Z ¼ ðh=lÞ2=12, n ¼ 0:3 and k ¼ 5/6, where h is the height of a rectangular cross-section beam (the same
parameters as Ref. [13]). From this table, the calculated results compared with Ref. [13] are in close agreement.
Besides, the first six dimensionless natural frequency ratios O1=O1ðEBÞ � O6=O6ðEBÞ versus the height-to-length
ratio h/l are shown in Fig. 4 (where OEB is the dimensionless natural frequency of Euler–Bernoulli beam). It is
evident that as h/l increases, the natural frequency decreases. The effect of shear deformation and rotary
inertia is negligible when h/l is very small and the influence of shear deformation and rotary inertia on the
natural frequency of the beam is more pronounced for higher modes.

4.3. A beam with two elastically restrained ends

In this case, the system properties are given as Z ¼ 0:01, n ¼ 0:3, k ¼ 0:85, and KTL ¼ KTR ¼ KRL ¼ KRR

(the same parameters as Ref. [5]). From the previous analysis one can set c0 ¼ P0ðOÞa, P0ðOÞ ¼ I and
substitute them into Eq. (54), the matrices PkðOÞ can be obtained, and then substitute into Eqs. (58) and (59),
the dimensionless natural frequencies can be found. The first three dimensionless natural frequencies O1 � O3

are listed in Table 5. From this table, the calculated results compared with Ref. [5] are also in close agreement.
In Tables 6 and 7, the first six dimensionless natural frequencies O1 � O6 are given for the Timoshenko beam
with two elastically restrained ends (n ¼ 0:3, k ¼ 0:85, Z ¼ 0:01, KTL ¼ KTR, KRL ¼ KRR, � ¼ 0:00001), From
the two tables one can find that the larger the spring parameters are, the larger the natural frequencies are, and
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Table 10

The first five dimensionless natural frequencies O1 � O5 of the cantilever Timoshenko beam with a tip mass at the free end (n ¼ 1=3, k ¼ 2=3, d ¼ 0, g ¼ 0, KTL ¼ KRL !1,

KTR ¼ KRR ¼ 0, � ¼ 0:00001).

Z m ¼ 0 m ¼ 0.5 m ¼ 1

O1 O2 O3 O4 O5 O1 O2 O3 O4 O5 O1 O2 O3 O4 O5

a 3.51602 22.03449 61.69721 120.90192 199.85953 2.01630 16.90142 51.70092 106.05798 180.12328 1.55730 16.25009 50.89584 105.19828 179.23202

0.0001 3.51194 21.85817 60.54259 116.83029 189.47317 2.01477 16.79574 50.86691 102.85019 171.50250 1.55622 16.15071 50.07968 102.02601 170.66864

0.0004 3.49980 21.35465 57.47046 106.92637 166.66000 2.01021 16.49090 48.61094 94.88795 152.13779 1.55301 15.86381 47.86999 94.14585 151.41994

0.0009 3.47990 20.59032 53.32878 95.20149 142.88874 2.00269 16.01956 45.48888 85.20173 131.43706 1.54770 15.41955 44.80754 84.54938 130.82721

0.0016 3.45267 19.64966 48.88913 84.11329 122.63316 1.99230 15.42565 42.04642 75.82404 113.48501 1.54037 14.85866 41.42534 75.25012 112.95912

0.0025 3.41872 18.61356 44.62358 74.48835 106.28420 1.97921 14.75433 38.65321 67.55370 98.88115 1.53110 14.22330 38.08637 67.04405 98.41966

0.0036 3.37873 17.54697 40.74471 66.36232 93.11252 1.96358 14.04513 35.50163 60.51869 87.14094 1.52001 13.55060 34.98095 60.06215 86.73055

0.0049 3.33347 16.49563 37.30974 59.50859 82.27785 1.94562 13.32875 32.66466 54.59354 77.63847 1.50723 12.86964 32.18233 54.18297 77.26968

0.0064 3.28370 15.48834 34.30052 53.65162 72.97121 1.92554 12.62687 30.14985 49.59152 69.84802 1.49290 12.20114 29.69918 49.22354 69.51097

0.0081 3.23022 14.54100 31.66935 48.52978 64.26923 1.90358 11.95346 27.93438 45.33291 63.36722 1.47716 11.55862 27.50994 45.00827 63.00422

0.01 3.17377 13.66065 29.36143 43.91022 55.98285 1.87996 11.31659 25.98440 41.65876 53.80067 1.46019 10.94999 25.58187 41.38465 53.37008

aEuler–Bernoulli beam.
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Fig. 5. The first five dimensionless frequency ratio Oi=OiðEBÞ versus the parameter Z for n ¼ 1=3, k ¼ 2=3, KTL ¼ KRL !1,

KTR ¼ KRR ¼ 0, d ¼ g ¼ 0 (—, m ¼ 0; - - - -, m ¼ 1).
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Fig. 6. The first five dimensionless frequency ratio Oi=OiðEBÞ versus the parameter Z for n ¼ 1=3, k ¼ 2=3, KTL ¼ KRL !1,

KTR ¼ KRR ¼ 0, m ¼ 0:5; d ¼ 0 (—, g ¼ 0; - - - -, g ¼ 1).
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Fig. 7. The first five dimensionless frequency ratio Oi=OiðEBÞ versus the parameter Z for n ¼ 1=3, k ¼ 2=3,
KTL ¼ KRL !1,KTR ¼ KRR ¼ 0, m ¼ g ¼ 1 (—, d ¼ 0; - - - -, d ¼ 1).
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the translational spring parameters KTL;KTR have greater influence on the natural frequencies than the
rotational spring parameters KRL;KRR.

4.4. A clamped beam with a tip mass at the right end

In this case, the first five dimensionless natural frequencies O1 � O5 of the cantilever Timoshenko beam with
a tip mass at the free end (Z ¼ 0:0004, x ¼ 625, m ¼ 1:0, g2 ¼ 0:125, d ¼ 0, KTL ¼ KRL !1, KTR ¼ KRR ¼ 0,
� ¼ 0:00001) are listed in Table 8. From this table, the calculated results compared with Refs. [3,10] are also in
close agreement. Table 9 lists the square root

ffiffiffiffiffiffi
O1

p
of the dimensionless fundamental natural frequency of the

cantilever Timoshenko beam elastically restrained and carrying a tip mass at the free end (n ¼ 0:25, k ¼ 4=3,
Z ¼ ðh=lÞ2=12, d ¼ 0, g ¼ 0, KRR ¼ 0, KTL ¼ KRL !1, � ¼ 0:00001), From this table, the calculated results
compared with Refs. [8,12] are also in close agreement. In Table 10, the first five dimensionless natural
frequencies O1 � O5 of the cantilever Timoshenko beam with a tip mass at the free end (n ¼ 1=3, k ¼ 2=3,
d ¼ 0, g ¼ 0, KTL ¼ KRL !1, KTR ¼ KRR ¼ 0) are listed. One can find that the dimensionless natural
frequencies decrease when the tip mass m increases and the parameter Z has greater influence on the natural
frequencies than m. Finally, In Figs. 5 and 6, It can be observed that the natural frequency ratios decrease
when the parameter Z increases for fixed m (or g), but the natural frequency ratios increase when m (or g)
increases for fixed Z. In Fig. 7, the influence of d on the natural frequency ratio seems very small.

5. Conclusion

The two coupled governing differential equations with constant coefficients for the free vibrations of
uniform Timoshenko beams with a tip mass and elastically ends constraints have been reduced into two
recursive algebraic equations. By the method proposed in this study, the closed form series solutions of the free
vibrations of uniform beams with various boundary conditions can be obtained. This paper presents an
effective method to solve vibration problems of uniform Timoshenko beams with a tip mass and elastically
ends constraints. By using the proposed method, any ith natural frequency and mode shape function can be
obtained one at a time. The larger the approximate term n is giving, more natural frequency can be found at
the same time. The computed results are compared closely with the results obtained by using other analytical
and numerical methods. This study provides a unified and systematic procedure which is seemingly simpler
and more straightforward than the other methods.
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